엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편
  • 엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편

엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편

공유
정가
23,000
판매가
20,700
구매혜택
할인 : 적립 마일리지 :
배송비
0원 / 주문시결제(선결제) 조건별배송 지역별추가배송비
방문 수령지 : 서울특별시 마포구 독막로31길 9, 2층
ISBN
9788931556766
출판사
성안당
저자
와쿠이 요시유키
발행일
2020-07-24
엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편
0
총 상품금액
총 할인금액
총 합계금액

책소개

엑셀만으로 딥러닝 동작 원리를 이해할 수 있는 AI 응용 입문서!
자연어 처리에서 가장 주목받는 신경망 알고리즘 RNN과 강화학습 기법으로 정확도를 높인 DQN을 엑셀로 쉽게 소개!


「엑셀로 배우는 딥러닝」의 속편격인 『엑셀로 배우는 순환 신경망·강화학습 초(超)입문』은 전편이 CNN(합성곱 신경망) 위주였다면 좀 더 딥러닝 쪽에 심화된 RNN(순환 신경망), DQN(심층 Q-네트워크)편이다. 이 책 제목에서 ‘초(超)입문’은 보통 초보자들이 처음 입문한다는 의미에서 쓰는 ‘처음 초(初)자의 ‘초입문(初入門)’이 아닌 ‘입문을 뛰어 넘는다’는 의미에서 ‘초월할 초(超)’ 자를 썼다. 저자는 진화하는 딥러닝 분야의 대표적인 예로 RNN(Recurrent Neural Network, 순환 신경망)과 DQN(Deep Q-Network, 심층 Q-네트워크)를 들면서 RNN은 자연어 처리 분야에서 가장 주목받는 알고리즘이며 DQN은 강화학습의 기법으로 정확도가 놀라울 만큼 높아졌음을 강조한다. 이 책은 누구나 사용하는 엑셀로 인공지능을 실습해 볼 수 있게 함으로써 인공지능 응용 입문서로 RNN과 DQN을 엑셀(Excel)로 어려운 수학이나 프로그래밍 지식 없이도 딥러닝의 구조와 동작 원리를 이해할 수 있도록 한 획기적인 입문서이다. 엑셀로 난해한 RNN, DQN의 ‘최적화’와 동작 원리를 쉽게 이해할 수 있어 AI 학습의 장벽을 단숨에 낮춰줄 것이다.

목차

머리말
역자 서문
이 책의 사용 방법
엑셀 샘플 파일 다운로드 방법


1장 RNN, DQN을 위한 준비
§ 01 RNN, DQN의 첫걸음
▶ 시계열 데이터를 다루게 된 ‘RNN’.
▶ 학습하는 로봇의 지능을 현실로 만든 ‘DQN’..
▶ 왜, 지금 AI가 꽃을 피웠는가?
▶ RNN, DQN을 엑셀로 체험

§ 02 사용할 엑셀 함수는 10개 남짓
▶ 사용할 주요 엑셀 함수
▶ TANH 함수
▶ OFFSET 함수
▶ MATCH 함수
▶ 배열 수식
▶ MMULT 함수

§ 03 최적화 계산이 불필요한 엑셀의 해 찾기
▶ 해 찾기를 사용해 보자
▶ 해 찾기로 구한 ‘최솟값’은 국소해

§ 04 데이터 분석에는 최적화가 필수
▶ 최적화는 데이터 분석에 필수
▶ 회귀분석이란?
▶ 구체적인 예로 회귀분석의 논리를 이해
▶ 회귀분석을 이해하면 데이터 분석도 이해돼


2장 엑셀로 배우는 신경망
§ 01 출발점이 되는 뉴런 모델
▶ 생물의 뉴런 구조
▶ 뉴런의 입력 처리 방법
▶ 발화
▶ 뉴런의 ‘입출력’을 수식으로 표현
▶ 뉴런의 ‘발화’를 수식으로 표현

§ 02 신경세포를 모델링한 인공 뉴런
▶ 뉴런의 움직임을 정리하면
▶ 발화 조건을 함수로 표현
▶ 인공 뉴런
▶ 뉴런의 간단한 그림
▶ 시그모이드 함수
▶ 시그모이드 뉴런
▶ 시그모이드 뉴런의 일반화
▶ 인공 뉴런과 활성화 함수의 정리
▶ 엑셀로 뉴런의 동작 재현
▶ ‘입력의 선형합’의 내적 표현 .

§ 03 신경망의 사고방식
▶ 입력층의 역할
▶ 은닉층의 역할
▶ 출력층의 역할
▶ 뉴런 1개는 지능이 없다!
▶ 특징 추출의 구조
▶ 출력층의 ‘판정원’은 정리하는 역할
▶ 구조를 정리하면
▶ 임곗값의 역할은 불필요한 정보를 차단하는 것
▶ 가중치와 임곗값의 결정 방법
▶ 신경망의 아이디어 정리

§ 04 신경망을 식으로 표현
▶ 변수명을 정하는 규칙
▶ 신경망을 식으로 표현
▶ 신경망 출력의 의미
▶ 정답을 변수화
▶ 제곱오차의 식 표현
▶ 모델의 최적화
▶ 신경망의 목적 함수

§ 05 엑셀로 배우는 신경망
▶ 훈련 데이터의 준비
▶ 신경망의 사고방식에 따라 함수 설정
▶ 목적 함수의 산출
▶ 신경망의 최적화
▶ 최적화된 파라미터 해석
▶ 신경망을 테스트하자

§ 06 보편성 정리
▶ 가중치와 임곗값을 구하는 방법


3장 엑셀로 배우는 RNN
§ 01 RNN의 사고방식
▶ 구체적인 예로 생각한다
▶ 종래의 신경망에 적용해보면?
▶ 신경망이 기억을 갖게 해주는 RNN
▶ 순환 신경망을 나타내는 그림
▶ 컨텍스트 노드의 계산
▶ 다른 예로 확인
▶ 파라미터의 결정 방법은 신경망과 동일

§ 02 순환 신경망을 식으로 표현
▶ 구체적인 과제로 생각한다 .
▶ 수식화 준비
▶ 뉴런의 입출력을 수식으로 표현
▶ 훈련 데이터 준비
▶ 구체적인 식으로 나타내본다
▶ 최적화를 위한 목적 함수를 구한다
▶ 최적화는 목적 함수의 최소화

§ 03 엑셀로 배우는 순환 신경망
▶ 구체적인 예로 생각한다
▶ 문자 코드화와 단어의 분해
▶ 파라미터의 초깃값 설정
▶ 첫 번째 문자의 계산 확인
▶ 두 번째 문자의 계산 확인
▶ 가중치에 음의 값 허용
▶ 단어 수를 늘려 확인


4장 엑셀로 배우는 Q학습
§ 01 Q학습의 사고방식
▶ 강화학습
▶ Q학습을 개미를 이용해 이해
▶ 좀 더 상세히 알아보자
▶ ‘냄새가 강한 방향으로’가 개미의 기본 행동
▶ ε-greedy 법으로 개미의 모험심을 표현
▶ 출구 정보의 갱신
▶ 학습률
▶ 개미의 행동 요약

§ 02 Q학습을 식으로 표현
▶ 개미를 이용해 배우는 Q학습 용어
▶ Q 값은 표의 이미지
▶ Q 값의 의미
▶ Q 값의 표와 개미와의 대응
▶ Q 학습의 수식에서 이용되는 기호의 의미
▶ 개미의 동작을 기호로 정리하면
▶ 할인율 γ, 학습률 a의 의미
▶ 수정 ε-greedy법
▶ 학습의 종료 조건

§ 03 엑셀로 배우는 Q학습
▶ 과제 확인
▶ 워크시트 작성상의 유의점 .
▶ 워크시트로 Q학습


5장 엑셀로 배우는 DQN
§ 01 DQN의 사고방식
▶ DQN의 구조
▶ 개미를 이용해 배우는 DQN
▶ DQN의 입출력 .
▶ DQN의 목적 함수
▶ 최적화 도구로 해 찾기 이용

§ 02 엑셀로 배우는 DQN
▶ 과제 확인
▶ 신경망과 활성화 함수의 가정
▶ Q학습의 결과 정리
▶ 입력층 데이터의 코드화
▶ 가중치와 임곗값의 초깃값 설정
▶ 은닉층에 대해 ‘입력의 선형합’을 구한다
▶ 은닉층의 출력을 구한다
▶ 출력층에 대한 ‘입력의 선형합’을 구한다
▶ 신경망의 목적 함수 계산
▶ DQN의 최적화
▶ DQN의 결과 확인
▶ 적합도를 올리기 위해서는 .


부록
§ A 훈련데이터
§ B 해 찾기의 설치 방법

§ C 순환 신경망을 다섯 문자에 응용

찾아보기 Index

저자

와쿠이 요시유키

출판사리뷰

시리즈 후속작으로 〈엑셀로 배우는 기계학습 초입문〉편도 선보일 예정이다.
★ 예제 소스 다운로드: https://vo.la/A3Hoh

■ 함께 보면 좋은 책
액셀로 배우는 딥러닝 와쿠이 요시유키, 와쿠이 사다미 저 | 권기태 역
C++로 배우는 딥러닝 후지타 타케시 저 | 김성훈 역
인공지능을 만드는 법 미야케 요이치로 저 | 이도희 역

상품필수 정보

도서명 엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편
저자/출판사 와쿠이 요시유키,성안당
크기/전자책용량 182*235*11
쪽수 224
제품 구성 상품상세참조
출간일 2020-07-24
목차 또는 책소개 상품상세참조

배송안내

- 기본 배송료는 2,500원 입니다. (도서,산간,오지 일부지역은 배송비 3,000원 추가)  

- 도서 20,000원 이상 구매 시 무료배송 입니다.

- 굿즈 30,000원 이상 구매 시 무료배송 입니다.

- 서점 내 재고가 있는 도서 배송 가능일은 1~2일 입니다.

- 일반 도서(단행본)의 경우 재고가 없는 도서 배송 가능일은 2~3일 입니다. 

- 독립출판물 도서의 배송 가능일은 1~2일 입니다.

- 배송 가능일이란 본 상품을 주문 하신 고객님들께 상품 배송이 가능한 기간을 의미합니다. (단, 연휴 및 공휴일은 기간 계산시 제외하며 현금 주문일 경우 입금일 기준 입니다) 

- 검색되는 모든 도서는 구매가 가능합니다. 단, 수급하는데 2~5일 시간이 걸립니다.

 

교환 및 반품안내

상품 청약철회 가능기간은 상품 수령일로 부터 7일 이내 입니다. 

 

반품/교환 가능 기간 

- 상품 택(tag)제거 또는 개봉으로 상품 가치 훼손 시에는 상품수령후 7일 이내라도 교환 및 반품이 불가능합니다.

공급받으신 상품 및 용역의 내용이 표시.광고 내용과 다르거나 다르게 이행된 경우에는 공급받은 날로부터 3월이내, 그사실을 알게 된 날로부터 30일이내

- 변심,구매 착오의 경우에만 반송료 고객 부담

 

반품/교환 불가 사유

- 소비자의 책임으로 상품 등이 손실되거나 훼손된 경우

- 소비자의 사용, 포장 개봉에 의해 가치가 현저히 감소한 경우

- 세트 상품 일부만 반품 불가

 

 

환불안내

상품 환불 규정 

- 상품 철회 가능기간은 상품 수령일로 부터 7일 이내 입니다.

출고 이후 환불요청 시 상품 회수 후 처리됩니다.

- 얼리 등 주문제작상품 / 밀봉포장상품 등은 변심에 따른 환불이 불가합니다.

- 비닐 커버 제거 시 반품 불가합니다.

- 변심 환불의 경우 왕복배송비를 차감한 금액이 환불되며, 제품 및 포장 상태가 재판매 가능하여야 합니다.

 

모임/행사 참가비 환불 규정

모임 시작일 4일 전까지 별도의 수수료 없이 전액 환불 가능합니다

- 모임 시작 3일 전까지는 환불이 되지 않습니다.

- 신청자가 저조해 모임 개설이 취소될 경우, 100% 환불됩니다.

AS안내

- 소비자분쟁해결 기준(공정거래위원회 고시)에 따라 피해를 보상받을 수 있습니다.

- A/S는 판매자에게 문의하시기 바랍니다.

이미지 확대보기엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편

엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편
  • 엑셀로 배우는 순환 신경망· 강화학습 초입문: RNN(순환신경망).DQN(심층Q-네트워크)편
닫기

비밀번호 인증

글 작성시 설정한 비밀번호를 입력해 주세요.

닫기

장바구니 담기

상품이 장바구니에 담겼습니다.
바로 확인하시겠습니까?

찜 리스트 담기

상품이 찜 리스트에 담겼습니다.
바로 확인하시겠습니까?